Abstract
In this paper we propose a method for retrieving the Point Spread Function (PSF) of an imaging system given the observed image sections of a fluorescent microsphere. Theoretically calculated PSFs often lack the experimental or microscope specific signatures while empirically obtained data are either over sized or (and) too noisy. The effect of noise and the influence of the microsphere size can be mitigated from the experimental data by using a Maximum Likelihood Expectation Maximization (MLEM) algorithm. The true experimental parameters can then be estimated by fitting the result to a model based on the scalar diffraction theory with lower order Spherical Aberration (SA). The algorithm was tested on some simulated data and the results obtained validate the usefulness of the approach for retrieving the PSF from measured data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.