Abstract

Widespread newborn screening on a point-of-care basis could prevent bilirubin neurotoxicity in newborns with glucose-6-phosphate dehydrogenase (G6PD) deficiency. We evaluated a quantitative G6PD assay on a digital microfluidic platform by comparing its performance with standard clinical methods. G6PD activity was measured quantitatively by using digital microfluidic fluorescence and the gold standard fluorescence biochemical test on a convenience sample of 98 discarded blood samples. Twenty-four samples were designated as G6PD deficient. Mean ± SD G6PD activity for normal samples using the digital microfluidic method and the standard method, respectively, was 9.7 ± 2.8 and 11.1 ± 3.0 U/g hemoglobin (Hb), respectively; for G6PD-deficient samples, it was 0.8 ± 0.7 and 1.4 ± 0.9 U/g Hb. Bland-Altman analysis determined a mean difference of -0.96 ± 1.8 U/g Hb between the digital microfluidic fluorescence results and the standard biochemical test results. The lower and upper limits for the digital microfluidic platform were 4.5 to 19.5 U/g Hb for normal samples and 0.2 to 3.7 U/g Hb for G6PD-deficient samples. The lower and upper limits for the Stanford method were 5.5 to 20.7 U/g Hb for normal samples and 0.1 to 2.8 U/g Hb for G6PD-deficient samples. The measured activity discriminated between G6PD-deficient samples and normal samples with no overlap. Pending further validation, a digital microfluidics platform could be an accurate point-of-care screening tool for rapid newborn G6PD screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call