Abstract

The monotonic and non-monotonic variations of atomic properties within and between the rows of the periodic table underlie our understanding of chemistry and accounting for these variations has been a signature strength of quantum mechanics (QM). However, the computational burden of QM motivates the development of more efficient means of describing electrons and reactivity. The recently developed LEWIS • model incorporates lessons learnt from QM into a force field that includes electrons as explicit pseudo-classical particles. Here, we extend LEWIS • across the 2 p and 3 p elements, and show that it is capable of reproducing both monotonic and non-monotonic variations of chemically important atomic properties in a cost-effective manner. An indicator of the strength of the construct is the ability of pairwise potentials trained on ionization energies and the order of spin configurations to predict atomic polarizabilities. In this manner, some insights of QM are uncoupled from its onerous computational burden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.