Abstract

Recent in vivo intracellular measurements indicate that cortical neurons operate in a high-conductance state mainly caused by intense network activity. Biophysical models of morphologically-reconstructed neocortical neurons with thousands of random synaptic events successfully reproduce intracellular measurements and the high discharge variability. Here we compare several classes of simplified models. Experimental findings are reproduced when the high-conductance component is explicitly taken into account. In contrast to integrate-and-fire models, the high discharge variability does not depend on the balance between excitation and inhibition. We suggest that basic electrophysiological properties and irregular activity of cortical neurons in vivo can be optimally captured by high-conductance models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.