Abstract

Abstract The identification of the delamination propagation direction in three-dimensional structures with arbitrarily shaped fronts is needed in many applications. In the cohesive element framework, the propagation direction may be computed as the normal direction to a numerical damage isoline. The damage isoline tracking requires to exchange information between neighboring elements, thus post-processing global data, which is computationally expensive. This work presents a novel approach for the evaluation of the growth driving direction, only using local element information. The method can be directly implemented in a user-defined element subroutine and be evaluated at the execution time of the analysis. The presented formulation and its implementation in the commercial Finite Element code Abaqus is validated by comparison to the damage isoline shape rendering using global information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.