Abstract
AbstractIn this paper, we first consider the Cauchy problem for quasilinear strictly hyperbolic systems with weak linear degeneracy. The existence of global classical solutions for small and decay initial data was established in (Commun. Partial Differential Equations 1994; 19:1263–1317; Nonlinear Anal. 1997; 28:1299–1322; Chin. Ann. Math. 2004; 25B:37–56). We give a new, very simple proof of this result and also give a sharp point‐wise decay estimate of the solution. Then, we consider the mixed initial‐boundary‐value problem for quasilinear hyperbolic systems with nonlinear boundary conditions in the first quadrant. Under the assumption that the positive eigenvalues are weakly linearly degenerate, the global existence of classical solution with small and decay initial and boundary data was established in (Discrete Continuous Dynamical Systems 2005; 12(1):59–78; Zhou and Yang, in press). We also give a simple proof of this result as well as a sharp point‐wise decay estimate of the solution. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.