Abstract

Point spread function (PSF) modeling is important for the characterization of the imaging performance of a photoacoustic computed tomography (PACT) system. This work aims to study the degradation mechanism of PSF in PACT and investigate the impact of the shape of detection geometry on PSF. PSF modeling of three typical two-dimensional detection geometries, including circular, curved, and linear detector arrays, is presented. Based on the non-ideal detection geometries, the effect of detector bandwidth and detector aperture on PSF is also investigated. Moreover, PSFs of each geometry with typical detector bandwidths and typical detector aperture sizes are presented. Experiments are conducted to validate the results. The proposed PSF modeling approach and corresponding results can help predict and interpret the quality of photoacoustic images produced by a practical PACT system. It is beneficial for the design of detector arrays for enhanced imaging performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.