Abstract

The point-spread function needed for imaging underwater objects is theoretically derived and compared with experimental results. The theoretical development is based on the emergent-ray model, in which the Gram-Charlier series for the non-Gaussian probability-density function for emergent angles through a wavy water surface was assumed. To arrive at the point-spread model, we used a finite-element methodology with emergent-ray angular probability distributions as fundamental building functions. The model is in good agreement with the experiment for downwind conditions. A slight deviation between theory and experiment was observed for the crosswind case; this deviation may be caused by the possible interaction of standing waves with the original air-ruffled capillary waves that were not taken into account in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.