Abstract
Due to the significant climatic effects of snow cover, it is very important to improve numerical simulation of snow cover in climate models. With the field data from Col de Porte, Freance and BOREAS, the evolution of seasonal snow cover is simulated with Compreshensive Land Surface Model. The objective of this study is to validate the model and investigate the snow cover proceses in both the alpine regions and the boreal forest. The sensitivity of the simulated results to some model parameters and the different phsyics responsible for the snow cover variation in vegetated and non-vegetated cases are investigated. The modeling results are in good agreements with the observational, and the model represents the snow-pack development and both the timing and the rate of seasonal snowmelt accurately in both cases, indicating that the model has the capacibilty to capture the main features of seasonal snow cover under water holding capacity have significant effects on the simulation of snow cover. The physical processes related to the snow cover variaiotn are different whether vegetation exits or not. Vegetation plays an important role in the dynamics of seasonal snow cover by controlling the radiative fluxes at the snow surface and thus the surface energy balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.