Abstract
The hyperelliptic Torelli group is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface and that also commute with some fixed hyperelliptic involution. We prove a Birman exact sequence for hyperelliptic Torelli groups, and we show that this sequence splits. As a consequence, we show that the hyperelliptic Torelli group is generated by Dehn twists if and only if it is generated by reducible elements. We also give an application to the kernel of the Burau representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.