Abstract

We study point process convergence for sequences of i.i.d. random walks. The objective is to derive asymptotic theory for the extremes of these random walks. We show convergence of the maximum random walk to the Gumbel distribution under the existence of a (2+δ)th moment. We make heavy use of precise large deviation results for sums of i.i.d. random variables. As a consequence, we derive the joint convergence of the off-diagonal entries in sample covariance and correlation matrices of a high-dimensional sample whose dimension increases with the sample size. This generalizes known results on the asymptotic Gumbel property of the largest entry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.