Abstract
Dispensing of mass prophylaxis can be critical to public health during emergency situations and involves complex decisions that must be made in a short period of time. This study presents a model and solution approach for optimizing point‐of‐dispensing (POD) location and capacity decisions. This approach is part of a decision support system designed to help officials prepare for and respond to public health emergencies. The model selects PODs from a candidate set and suggests how to staff each POD so that average travel and waiting times are minimized. A genetic algorithm (GA) quickly solves the problem based on travel and queuing approximations (QAs) and it has the ability to relax soft constraints when the dispensing goals cannot be met. We show that the proposed approach returns solutions comparable with other systems and it is able to evaluate alternative courses of action when the resources are not sufficient to meet the performance targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.