Abstract

Pressure measurements are performed everyday with simple devices, and in the field of analytical chemistry the pressure-based signaling strategy offers two important advantages, signal amplification and particular applicability in point-of-care settings. Herein, by using vancomycin (Van)-functionalized platinum nanoparticles (PtNPs@Van) and aptamer-coated magnetic CuFe2O4 nanoprobes dual-recognition units integrated with a catalyzed breakdown of H2O2 for O2 generation, we demonstrated that gas pressure can be used as a readout means for highly sensitive pathogenic bacteria identification and quantification. Using Staphylococcus aureus ( S. aureus) as a test case, integration of the molecular dual-recognition component with the catalyzed gas-generation reaction leads to a significant pressure change (Δ P), and the correlation between the concentration of S. aureus and the Δ P signal was found to be linear from 5.0 to 1.0 × 104 cfu/mL with a detection limit of 1.0 cfu/mL. Other nontarget bacteria show negative results, verifying the high specificity of the present strategy. When employed to assay S. aureus in saliva and milk samples, the approach shows recoveries from 93.3% to 107.1% with relative standard derivation (RSD) less than 8.8%. By the integration of catalyzed gas-generation reaction with the designed molecular recognition event, obviously the pressure-based signaling strategy could facilitate pathogenic bacteria identification and quantification not only in the laboratory but also in point-of-care settings, which could have great potential in the application of food safety and infectious disease diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.