Abstract

Detection of telomerase activity at the single-cell level is one of the central challenges in cancer diagnostics and therapy. Herein, we describe a facile and reliable point-of-care testing (POCT) strategy for detection of telomerase activity via a portable pressure meter. Telomerase primer (TS) was immobilized onto the surface of magnetic beads (MBs), and then was elongated to a long single-stranded DNA by telomerase. The elongated (TTAGGG)n repeat unit hybridized with several short PtNP-functionalized complementary DNA (PtNPs-cDNA), which specifically enriched PtNPs onto the surfaces of magnetic beads (MBs), which were separated using a magnet. Then, nanoparticle-catalyzed gas-generation reaction converted telomerase activity into significant change in gas pressure. Because of the self-amplification of telomerase and enrichment by magnetic separation, the diluted telomerase equivalent to a single HeLa cell was facilely detected. More importantly, the telomerase in the lysate of 1 HeLa cell can be reliably detected by monitoring change in gas pressure, indicating that it is feasible and possible to study differences between individual cells. The difference in relative activity between different kinds of cancer cells was easily and sensitively studied. Study of inhibition of telomerase activity demonstrated that our method has great potential in screening of telomerase-targeted antitumor drugs as well as in clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call