Abstract

In the quest to improve both aesthetic and functional outcomes for patients, the clinical care of full-thickness cutaneous wounds has undergone significant development over the past decade. A shift from replacement to regeneration has prompted the development of skin substitute products, however, inaccurate replication of host tissue properties continues to stand in the way of realising the ultimate goal of scar-free healing. Advances in three-dimensional (3D) bioprinting and biomaterials used for tissue engineering have converged in recent years to present opportunities to progress this field. However, many of the proposed bioprinting strategies for wound healing involve lengthy in-vitro cell culture and construct maturation periods, employ complex deposition technologies, and lack credible point of care (POC) delivery protocols. In-situ bioprinting is an alternative strategy which can combat these challenges. In order to survive the journey to bedside, printing protocols must be curated, and biomaterials/cells selected which facilitate intraoperative delivery. In this review, the current status of in-situ 3D bioprinting systems for wound healing applications is discussed, highlighting the delivery methods employed, biomaterials/cellular components utilised and anticipated translational challenges. We believe that with the growth of collaborative networks between researchers, clinicians, commercial, ethical, and regulatory experts, in-situ 3D bioprinting has the potential to transform POC wound care treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call