Abstract

Swine viral diseases challenge the sector’s sustainability by affecting productivity and the health and welfare of the animals. The lack of antiviral drugs and/or effective vaccines renders early and reliable diagnosis the basis of viral disease management, underlining the importance of point-of-care (POC) diagnostics. A novel POC diagnostic device utilizing photonic integrated circuits (PICs), microfluidics, and information and communication technologies for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A (SIV) was validated using spiked and clinical oral fluid samples. Metrics including sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device. For PRRSV, the device achieved a sensitivity of 83.5%, specificity of 77.8%, and DOR values of 17.66, whereas the values for SIV were 81.8%, 82.2%, and 20.81, respectively. The POC device and PICs can be used for the detection of PRRSV and SIV in the field, paving the way for the introduction of novel technologies in the field of animal POC diagnostics to further optimize livestock biosecurity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call