Abstract

The coat protein (CP) of potato leafroll virus (PLRV) is the primary component of the capsid, and is a multifunctional protein known to be involved in vector transmission and virus movement within plant hosts, in addition to particle assembly. Thirteen mutations were generated in various regions of the CP and tested for their ability to affect virus-host and virus-vector interactions. Nine of the mutations prevented the assembly of stable virions. These mutants were unable to infect systemically four different host species. Furthermore, although virus replication and translation of the CP were similar for the mutants and wild-type virus in individual plant cells, the translation of the CP readthrough product was affected in several of the mutants. Four of the mutants were able to assemble stable particles and infect host plants systemically, similarly to the wild-type virus; however, two of the mutants were transmitted less efficiently by aphid vectors. Based on a computer-generated model of the PLRV CP, the mutations that prevented virion assembly were associated with subunit interfaces, while the amino acid alterations in the assembly-competent mutants were associated with surface loops. This and previous work indicates that the CP structural model has value in predicting the structural architecture of the virion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.