Abstract

Insecticide resistance frequently results from target-site insensitivity, such as point mutations in acetylcholinesterases (AChEs) for resistance to organophosphates and carbamates. From a field-originated population of Nilaparvata lugens, a major rice pest, a resistant population (R9) was obtained by nine-generation continuous selection with chlorpyrifos. From the same field population, a relatively susceptible population (S9) was also constructed through rearing without any insecticides. Compared to thesusceptible strain, Sus [medium lethal dose (LC50 ) = 0.012 mg/l], R9 had a resistance ratio (RR) of 253.08-fold, whereas the RR of S9 was only 2.25-fold. Piperonyl butoxide and triphenyl phosphate synergized chlorpyrifos in R9 less than three-fold, indicating other important mechanisms for high resistance. The target-site insensitivity was supported by the key property differences of crude AChEs between R9 and S9. Compared to S9, three mutations (G119S, F331C and I332L) were detected in NlAChE1 from individuals of the R9 and field populations, but no mutation was detected in NlAChE2. G119S and F331C could decreased insecticide sensitivities in recombinant NlAChE1, whereas I332L took effect through increasing the influence of F331C on target insensitivity. F331C might be deleterious because of its influence on the catalytic efficiency of NlAChE1, whereas I332L would decrease these adverse effects and maintain the normal functions of AChEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call