Abstract

The risks of secondary lung cancer in patients with early stage non-small and small cell lung cancers are estimated to be 1-2% and 2-10% per patient per year, respectively. Surprisingly, the incidence of second primary cancer in locally advanced non-small cell lung cancer at 10 years, following cisplatin-based chemotherapy with concurrent radiotherapy, increases to 61%. Those patients, on the road to being cured, cannot overlook the possibility of developing a second primary cancer. We developed a second primary lung cancer model using cisplatin as a carcinogen in A/J mice to screen for chemopreventive agents for a second malignancy. In the primary lung tumour model, 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), benzo(a)pyrene (BaP), urethane induces specific K-ras mutations in codon 12, codon 12, and codon 61, respectively, in the A/J mice. In this study, we investigated the mechanisms of carcinogenicity by cisplatin in the A/J mice. In the cisplatin-induced tumours, we found no K-ras codon 12 mutation, which is the major mutation induced by NNK or BaP. K-ras gene mutations in codon 13 and codon 61 were found in one tumour (4%) and five tumours (17.8%), respectively. These findings suggest that cisplatin is partially related to K-ras codon 61 mutations, and that the mechanism of carcinogenicity by cisplatin is different from that by NNK or BaP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.