Abstract
Purinergic P2 receptors and gap junctions are two groups of proteins involved in the transmission of ICWs (intercellular calcium waves) between astrocytes. The extent to which ICWs spread among these glial cells depends on the amount of ATP released, which can occur through membrane channels, as well as other pathways. Our previous studies have shown that the pore-forming P2X7R (P2X7 receptor) contributes to the amplification of ICW spread by providing sites of ATP release through Panx1 (Pannexin1) channels. To gain insight into the signal transduction events mediating this response we compared the properties of the P2X7R–Panx1 complex in astrocytes from a mouse strain (C57Bl/6) containing a naturally occurring point mutation (P451L) in the C-terminus of the P2X7R to that of non-mutated receptors (Balb/C mice). Electrophysiological, biochemical, pharmacological and fluorescence imaging techniques revealed that the P451L mutation located in the SH3 domain (a Src tyrosine kinase-binding site) of the C-terminus of the P2X7R attenuates Panx1 currents, ATP release and the distance of ICW spread between astrocytes. Similar results were obtained when using the Src tyrosine inhibitor (PP2) and a membrane-permeant peptide spanning the P451L mutation of the P2X7R of the C57Bl6 astrocytes. These results support the participation of a tyrosine kinase of the Src family in the initial steps mediating the opening of Panx1 channels following P2X7R stimulation and in the transmission of calcium signals among astrocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.