Abstract

We study the point location problem on dynamic planar subdivisions that allows insertions and deletions of edges. In our problem, the underlying graph of a subdivision is not necessarily connected. We present a data structure of linear size for such a dynamic planar subdivision that supports sublinear-time update and polylogarithmic-time query. Precisely, the amortized update time is O(sqrt{n}log n(log log n)^{3/2}) and the query time is O(log n(log log n)^2), where n is the number of edges in the subdivision. This answers a question posed by Snoeyink in the Handbook of Computational Geometry. When only deletions of edges are allowed, the update time and query time are just O(alpha(n)) and O(log n), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.