Abstract

Light source position (LSP) estimation is a difficult yet an important problem in computer vision. A common approach for estimating the LSP assumes Lambert's law. However, in real-world scenes, Lambert's law does not hold for all different types of surfaces. Instead of assuming all that surfaces follow Lambert's law, our approach classifies image surface segments based on their photometric and geometric surface attributes (i.e. glossy, matte, curved, and so on) and assigns weights to image surface segments based on their suitability for LSP estimation. In addition, we propose the use of the estimated camera pose to globally constrain LSP for RGB-D video sequences. Experiments on Boom and a newly collected RGB-D video data sets show that the state-of-the-art methods are outperformed by the proposed method. The results demonstrate that weighting image surface segments based on their attributes outperform the state-of-the-art methods in which the image surface segments are considered to equally contribute. In particular, by using the proposed surface weighting, the angular error for LSP estimation is reduced from 12.6° to 8.2° and 24.6° to 4.8° for Boom and RGB-D video data sets, respectively. Moreover, using the camera pose to globally constrain LSP provides higher accuracy (4.8°) compared with using single frames (8.5°).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.