Abstract

In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. This study proposes a maximum a posteriori (MAP) estimation using Point-Jacobian iteration to restore a degraded image. The proposed method assumes a Gaussian additive noise and Markov random field of spatial continuity. The proposed method employs a neighbor window of spoke type which is composed of 8 line windows at the 8 directions, and a boundary adjacency measure of Mahalanobis square distance between center and neighbor pixels. For the evaluation of the proposed method, a pixel-wise classification was used for simulation data using various patterns similar to the structure exhibited in high resolution imagery and an unsupervised segmentation for the remotely-sensed image data of 1 mspatial resolution observed over the north area of Anyang in Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution imagery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.