Abstract

A family of point interactions of the dipole type is studied in one dimension using a regularization by rectangles in the form of a barrier and a well separated by a finite distance. The rectangles and the distance are parametrized by a squeezing parameter ε → 0 with three powers μ, ν and τ describing the squeezing rates for the barrier, the well and the distance, respectively. This parametrization allows us to construct a whole family of point potentials of the dipole type including some other point interactions, such as e.g. δ-potentials. Varying the power τ, it is possible to obtain in the zero-range limit the following two cases: (i) the limiting δ′-potential is opaque (the conventional result obtained earlier by some authors) or (ii) this potential admits a resonant tunneling (the opposite result obtained recently by other authors). The structure of resonances (if any) also depends on a regularizing sequence. The sets of the {μ, ν, τ}-space where a non-zero (resonant or non-resonant) transmission occurs are found. For all these cases in the zero-range limit the transfer matrix is shown to be of the form with real parameters χ and g depending on a regularizing sequence. Those cases when χ ≠ 1 and g ≠ 0 mean that the corresponding δ′-potential is accompanied by an effective δ-potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.