Abstract

This paper analyzes the behavior of Hong's point estimate methods to account for uncertainties on the probabilistic power flow problem. This uncertainty may arise from different sources as load demand or generation unit outages. Point estimate methods constitute a remarkable tool to handle stochastic power system problems because good results can be achieved by using the same routines as those corresponding to deterministic problems, while keeping low the computational burden. In previous works related to power systems, only the two-point estimate method has been considered. In this paper, four different Hong's point estimate schemes are presented and tested on the probabilistic power flow problem. Binomial and normal distributions are used to model input random variables. Results for two different case studies, based on the IEEE 14-bus and IEEE 118-bus test systems, respectively, are presented and compared against those obtained from the Monte Carlo simulation. Particularly, this paper shows that the use of the scheme provides the best performance when a high number of random variables, both continuous and discrete, are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.