Abstract

Abstract We introduce the point degree spectrum of a represented space as a substructure of the Medvedev degrees, which integrates the notion of Turing degrees, enumeration degrees, continuous degrees and so on. The notion of point degree spectrum creates a connection among various areas of mathematics, including computability theory, descriptive set theory, infinite-dimensional topology and Banach space theory. Through this new connection, for instance, we construct a family of continuum many infinite-dimensional Cantor manifolds with property C whose Borel structures at an arbitrary finite rank are mutually nonisomorphic. This resolves a long-standing question by Jayne and strengthens various theorems in infinite-dimensional topology such as Pol’s solution to Alexandrov’s old problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.