Abstract

We investigate the dynamics of Zn diffusion in MOVPE-grown AlGaInP/GaInP systems by the comparison of different structures that emulate the back-surface field (BSF) and base layers of a GaInP subcell integrated into an inverted multijunction solar cell structure. Through the analysis of secondary ion mass spectroscopy (SIMS), electrochemical capacitance-voltage (ECV) and spectrally resolved cathodoluminescence (CL) measurements, we provide experimental evidence that 1) the Zn diffusion is enhanced by point defects injected during the growth of the tunnel junction cathode layer; 2) the intensity of the process is determined by the cathode doping level and it happens for different cathode materials; 3) the mobile Zn is positively charged and 4) the diffusion mechanism reduces the CuPt ordering in GaInP. We demonstrate that using barrier layers the diffusion of point defects can be mitigated, so that they do not reach Zn-doped layers, preventing its diffusion. Finally, the impact of Zn diffusion on solar cells with different Zn-profiles is evaluated by comparing the electrical I-V curves at different concentrations. The results rule out the introduction of internal barriers in the BSF but illustrate how Zn diffusion under typical growth condition can reach the emitter and dramatically affect the series resistance, among other effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call