Abstract

AbstractWe present a study of point-defect creation in yttria-stabilized zirconia (ZrO2: Y) or YSZ exposed to various heavy ions (from C to U) covering an energy range from 100 MeV to several GeVs. It is concluded that F+-type centers (involving singly-ionized oxygen vacancies) are produced by elastic-collision processes. The ion-induced out-of-plane expansion is found to be small (< 0.2%) and to increase linearly as a function of the average F+-type center concentration with a large slope compatible with small oxygen vacancy clusters. The large defect volume and <100> axial symmetry of the F+-type centers hint that these color centers might actually be divacancies (i.e. F2+centers).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.