Abstract

AbstractFormation of defects during Zn diffusion into undoped and Fe-doped InP single crystals at 700°C has been observed by transmission electron microscopy for various diffusion conditions. The observations are correlated with Zn concentration profiles obtained by electron microprobe measurements and secondary-ion mass spectrometry. The results allow the conclusion that indiffusing interstitial Zn can occupy In sublattice sites via a kick-out reaction. Under appropriate diffusion conditions supersaturations of In self-interstitial atoms result leading to defect formation. Observations in Fe-doped InP suggest that Zn also replaces Fe on In sublattice sites leading to redistribution and to precipitation of Fe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.