Abstract

In this paper, propagation of flexural vibration in phononic crystal thin plates with a point defect are explored using finite element method. The plate is composed of an array of circular crystalline Al2O3 cylinders embedded periodically in the epoxy matrix with a square lattice. The point defect is introduced by changing one of the cylinders’ radii. Comparing the results of finite element method with that of improved plane wave expansion method, complete and accurate band structures and transmission response curves are obtained using the former method to identify the point defect eigenmodes and band gaps. The results show that the finite element method is efficient and suitable for the exploring of point defect states of phononic crystal thin plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.