Abstract

This communication reports on the defect chemistry at room temperature of barium (Ba) doped bismuth titanate (Bi4Ti3O12), emphasizing the influence of the point defects on its electrical properties. Pure and Ba doped Bi4Ti3O12 were prepared by a conventional solid-phase reaction technique. The addition of Ba into the crystal structure of Bi4Ti3O12 was monitored by X-ray diffraction measurements combined with Rietveld refinement studies where it was determined that Ba occupies the bismuth (Bi) lattice sites as well as the presence of oxygen vacancies ( $$V_{O}^{{ \bullet \bullet }}$$ ). The characterization of the point defects was carried out using impedance and electron spin resonance spectroscopies where the results support the models of compensation mechanisms dominated by electrical positive charges $$({h^ \bullet })$$ and oxygen vacancies ( $$V_{O}^{{ \bullet \bullet }}$$ ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.