Abstract

We present transport measurements of a nondegenerate two-dimensional electron system on the surface of liquid helium at a point constriction. The constriction is formed in a microchannel by a split gate beneath the helium surface. The electrostatic energy of the electron system, which depends in part on the electron density, determines the split-gate voltage threshold of current flow through the constriction. Steplike increases in conductance are observed as the confinement strength is reduced. As the Coulomb interaction between electrons is strong, we attribute this effect to the increase in the number of electrons that can pass simultaneously through the constriction. Close to the threshold, single-electron transport is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.