Abstract

Iron-based superconductors (FeSC) present an unprecedented variety of features both in the superconducting and in the normal state. Different families differ in the value of the critical temperature, in the shape of the Fermi surface, in the existence or absence of quasi-nesting conditions, in the range of doping in which the antiferromagnetic (AFM) and the superconducting phase coexist and in the structure of the order parameter in the reciprocal space, and so on. In this paper the most important results of point-contact spectroscopy (PCS) in Fe-based superconductors are reviewed, and the most recent advances are described with the aim to discuss the future perspectives and challenges of this spectroscopic technique in the characterization of the superconducting properties of these complex compounds. One of the main challenges, faced so far only by a few researchers in the PCS field, is to fully explore the phase diagram of these materials, as a function of doping or pressure, to understand the interplay between superconductivity and magnetism, the effect of intrinsic or extrinsic inhomogeneities, the role of spin fluctuations (SFs) in the pairing, the symmetry and the structure of the order parameter(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call