Abstract

Machining feature recognition serves as a foundational step in process planning, crucial for translating design information into manufacturing information. Traditional rule-based methods require extensive manual rule definition, prompting researchers to develop learning-based methods using data-driven algorithms. However, existing learning-based methods typically demand substantial data annotation and show limitations in machining feature segmentation. To address these issues, this paper introduces a novel learning-based machining feature recognition method. The proposed method leverages self-supervised learning to autonomously extract valuable intrinsic information from unlabeled data and incorporates a discriminative loss function to improve feature segmentation performance, thereby enhancing feature recognition results under conditions of limited labeled data. Specifically, the self-supervised learning network is first pre-trained on a large amount of unlabeled point cloud data representing CAD models and then fine-tuned with labeled data using the discriminative loss function. The fine-tuned network can be employed for recognizing machining features. Experimental results demonstrate that the proposed approach is effective during pre-training and improves feature recognition performance with limited amounts of labeled data, potentially reducing annotation efforts and associated costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.