Abstract

To overcome the limitations of inadequate local feature representation and the underutilization of global information in dynamic graph convolutions, we propose a network that combines attention mechanisms with dual graph convolutions. Firstly, we construct a static graph based on the dynamic graph using the K-nearest neighbors algorithm and geometric distances of point clouds. This integration of dynamic and static graphs forms a dual graph structure, compensating for the underutilization of geometric positional relationships in the dynamic graph. Next, edge convolutions are applied to extract edge features from the dual graph structure. To further enhance the capturing ability of local features, we employ attention pooling, which combines max pooling and average pooling operations. Secondly, we introduce channel attention modules and spatial self-attention modules to improve the representation ability of global features and enhance semantic segmentation accuracy in our network. Experimental results on the S3DIS dataset demonstrate that compared to dynamic graph convolution alone, our proposed approach effectively utilizes both semantic and geometric relationships between point clouds using dual graph convolutions while addressing limitations related to insufficient local feature extraction. The introduction of attention mechanisms helps mitigate underutilization issues with global information, resulting in significant improvements in model performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.