Abstract
Three-dimensional (3D) reconstruction is an essential technique to visualize and monitor the growth of agricultural and forestry plants. However, inspecting tall plants (trees) remains a challenging task for single-camera systems. A combination of low-altitude remote sensing (an unmanned aerial vehicle) and a terrestrial capture platform (a mobile robot) is suggested to obtain the overall structural features of trees including the trunk and crown. To address the registration problem of the point clouds from different sensors, a registration method based on a fast point feature histogram (FPFH) is proposed to align the tree point clouds captured by terrestrial and airborne sensors. Normal vectors are extracted to define a Darboux coordinate frame whereby FPFH is calculated. The initial correspondences of point cloud pairs are calculated according to the Bhattacharyya distance. Reliable matching point pairs are then selected via random sample consensus. Finally, the 3D transformation is solved by singular value decomposition. For verification, experiments are conducted with real-world data. In the registration experiment on noisy and partial data, the root-mean-square error of the proposed method is 0.35% and 1.18% of SAC-IA and SAC-IA + ICP, respectively. The proposed method is useful for the extraction, monitoring, and analysis of plant phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.