Abstract

For the issue of using the center of gravity during down-sampling, some points of their feature will be lost. We propose a new method, FWD(Farthest point Weighted mean Down-sampling), this method uses down-sampling to find the center of gravity, it is added to the furthest point sampling and performed ten iterations. The obtained 11-point distance is weighted average to find the feature point. Influences of environmental noise and self-noises on the subsequent processing of point cloud are considered. A PWB (Principal component analysis Wavelet function Bilateral Filtering) method is proposed. The normal vector of points is calculated by PCA. The distance between two points in the optimal neighborhood is obtained by the particle swarm optimization(PSO) method. This method performs wavelet smoothing and utilizes the Gaussian function to retain the edge eigenvalues. FWD simplified 90840 points in 48 seconds in the case of retaining the complete feature points. Compared with other latest methods, better results have been obtained. PWB reached de-noising precision of 0.9696 within 72.31s. Accuracy of de-noising is superior to the latest method. The loss of feature points is completed by FWD, the removal of noise is by PWB. Images of de-noising precision prove the priority of the method. The verification shows that the feature points are retained and the noise is eliminated.

Highlights

  • In machine vision applications, point cloud acquisition can contain excessive noise due to the surrounding environment, equipment, lighting, etc

  • These results prove that PSO wavelets bilateral filtering (PWB) is better than the other three methods based on artificial neural network

  • In the experiment, the unevenness of a spherical point cloud is difficult to simplify. When it makes a 3D voxel grid, the traditional under-sampling process has the limitation of selecting the center of gravity as the feature point, so some key points will be lost

Read more

Summary

Introduction

Point cloud acquisition can contain excessive noise due to the surrounding environment, equipment, lighting, etc. The point cloud denoising methods of the optimized PCA and bilateral filter are used by us.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.