Abstract

Most existing point cloud instance segmentation methods require accurate and dense point-level annotations, which are extremely laborious to collect. While incomplete and inexact supervision has been exploited to reduce labeling efforts, inaccurate supervision remains under-explored. This kind of supervision is almost inevitable in practice, especially in complex 3D point clouds, and it severely degrades the generalization performance of deep networks. To this end, we propose the first weakly supervised point cloud instance segmentation framework with inaccurate box-level labels. A novel self-distillation architecture is presented to boost the generalization ability while leveraging the cheap but noisy bounding-box annotations. Specifically, we employ consistency regularization to distill self-knowledge from data perturbation and historical predictions, which prevents the deep network from overfitting the noisy labels. Moreover, we progressively select reliable samples and correct their labels based on the historical consistency. Extensive experiments on the ScanNet-v2 dataset were used to validate the effectiveness and robustness of our method in dealing with inexact and inaccurate annotations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call