Abstract
Increasing demand for more reliable and safe autonomous driving means that data involved in the various aspects of perception, such as object detection, will become more granular as the number and resolution of sensors progress. Using these data for on-the-fly object detection causes problems related to the computational complexity of onboard processing in autonomous vehicles, leading to a desire to offload computation to roadside infrastructure using vehicle-to-infrastructure communication links. The need to transmit sensor data also arises in the context of vehicle fleets exchanging sensor data, over vehicle-to-vehicle communication links. Some types of sensor data modalities, such as Light Detection and Ranging (LiDAR) point clouds, are so voluminous that their transmission is impractical without data compression. With most emerging autonomous driving implementations being anchored on point cloud data, we propose to evaluate the impact of point cloud compression on object detection. To that end, two different object detection architectures are evaluated using point clouds from the KITTI object dataset: raw point clouds and point clouds compressed with a state-of-the-art encoder and three different compression levels. The analysis is extended to the impact of compression on depth maps generated from images projected from the point clouds, with two conversion methods tested. Results show that low-to-medium levels of compression do not have a major impact on object detection performance, especially for larger objects. Results also show that the impact of point cloud compression is lower when detecting objects using depth maps, placing this particular method of point cloud data representation on a competitive footing compared to raw point cloud data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.