Abstract
In order to estimate atomic multipole moments (AMMs) and charges in the model of amorphous SiO2 a hybrid B3LYP functional with 30% of the Hartree-Fock Hamiltonian in the exchange part with the 88-31G*(Si)/8-411G*(O) basis set and the CRYSTAL06 package are used. A 192-atomic unit cell of amorphous SiO2 is chosen as a model, the calculations with which agree well with the experimental static factor of neutron scattering. The second optimized model of amorphous SiO2 (a-SiO2) with a smaller number of defects is prepared with the use of the VASP package and full optimization of the initial a-SiO2 model. For both models the atomic charges and AMMs are calculated (up to the fourth order included) and their approximation is performed. The approximation quality is compared for these models and with a model for crystalline systems whose AMMs were previously calculated. The conclusions are drawn about the applicability of charge and AMM estimates within the approaches such as the embedded cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.