Abstract

BackgroundMicrodialysis is a well-established technology that can be used for continuous blood glucose monitoring. We determined point and trend accuracy, and reliability of a microdialysis-based continuous blood glucose-monitoring device (EIRUS®) in critically ill patients.MethodsProspective study involving patients with an expected intensive care unit stay of ≥48 h. Every 15 min, device readings were compared with blood glucose values measured in arterial blood during blocks of 8 h per day for a maximum of 3 days. The Clarke error grid, Bland–Altman plot, mean absolute relative difference and glucose prediction error analysis were used to express point accuracy and the rate error grid to express trend accuracy. Reliability testing included aspects of the device and the external sensor, and the special central venous catheter (CVC) with a semipermeable membrane for use with this device.ResultsWe collected 594 paired values in 12 patients (65 [26–80; 8–97] (median [IQR; total range]) paired values per patient). Point accuracy: 93.6 % of paired values were in zone A of the Clarke error grid, 6.4 % were in zone B; bias was 4.1 mg/dL with an upper limit of agreement of 28.6 mg/dL and a lower level of agreement of −20.5 mg/dL in the Bland–Altman analysis; 93.6 % of the values ≥75 mg/dL were within 20 % of the reference values in the glucose prediction error analysis; the mean absolute relative difference was 7.5 %. Trend accuracy: 96.4 % of the paired values were in zone A, and 3.3 and 0.3 % were in zone B and zone C of the rate error grid. Reliability: out of 16 sensors, 4 had to be replaced prematurely; out of 12 CVCs, two malfunctioned (one after unintentional flushing by unsupervised nurses of the ports connected to the internal microdialysis chamber, causing rupture of the semipermeable membrane; one for an unknown reason). Device start-up time was 58 [56–67] min; availability of real-time data was 100 % of the connection time.ConclusionsIn this study in critically ill patients who had no hypoglycemic episodes and a limited number of hyperglycemic excursions, point accuracy of the device was moderate to good. Trend accuracy was very good. The device had no downtimes, but 4 out of 16 external sensors and 2 out of 12 CVCs had practical problems.Electronic supplementary materialThe online version of this article (doi:10.1186/s13613-016-0171-3) contains supplementary material, which is available to authorized users.

Highlights

  • Microdialysis is a well-established technology that can be used for continuous blood glucose moni‐ toring

  • Study design and population This investigator-initiated prospective study was conducted in the mixed medical-surgical intensive care unit (ICU) of the Academic Medical Center, Amsterdam, The Netherlands

  • Patients were eligible for participation if they were at least 18 years old, were expected to stay in the ICU for ≥48 h, had an arterial catheter in place and were in need of a central venous catheter (CVC)

Read more

Summary

Introduction

Microdialysis is a well-established technology that can be used for continuous blood glucose moni‐ toring. We determined point and trend accuracy, and reliability of a microdialysis-based continuous blood glucosemonitoring device (EIRUS®) in critically ill patients. Most if not all critically ill patients receive intravenous infusion of insulin for blood glucose control at some point during stay in the intensive care unit (ICU) [1]. This strategy requires frequent blood glucose measurements for the guidance of insulin titrations, but this is both time- and blood-consuming [2]. EIRUS® (Maquet Critical Care AB, Solna, Sweden), a microdialysis-based device that can measure blood glucose and lactate levels, has been tested and validated previously in studies in surgical patients, where it has been found to be safe and accurate [4,5,6,7]. Its accuracy with regard to blood glucose monitoring, and reliability have not yet been tested extensively in ICU patients [4, 6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call