Abstract

This paper derives a one-order statistic estimator μ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">mn</sub> b for the location parameter of the (first) extreme-value distribution of smallest values with cumulative distribution function F(x;u,b) = 1 - exp {-exp[(x-u)/b]} using the minimum-variance unbiased one-order statistic estimator for the scale parameter of an exponential distribution, as was done in an earlier paper for the scale parameter of a Weibull distribution. It is shown that exact confidence bounds, based on one-order statistic, can be easily derived for the location parameter of the extreme-value distribution and for the scale parameter of the Weibull distribution, using exact confidence bounds for the scale parameter of the exponential distribution. The estimator for u is shown to be b ln cmn + xmn, where xmn is the mth order statistic from an ordered sample of size n from the extreme-value distribution with scale parameter b and Cmn is the coefficient for a one-order statistic estimator of the scale parameter of an exponential distribution. Values of the factor cmn, which have previously viously been tabulated for n = 1(1)20, are given for n = 21(1)40. The ratios of the mean-square-errors of the maximum-likelihood estimators based on m order statistics to those of the one-order statistic estimators for the location parameter of the extreme-value distribution and the scale parameter of the Weibull distribution are investigated by Monte Carlo methods. The use of the table and related tables is discussed and illustrated by numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.