Abstract

Abstract Poincare's celebrated theorem on the nonexistence of analytical invariants of motion is extended to the case of a continuous spectrum to deal with large classical and quantum systems. It is shown that Poincare's theorem applies to situations where there exist continuous sets of resonances. This condition is equivalent to the nonvanishing of the asymptotic collision operator as defined in modern kinetic theory. Typical examples are systems presenting relaxation processes or exhibiting unstable quantum levels. As the result of Poincare's theorem, the unitary transformation, leading to a cyclic Hamiltonian in classical mechanics or to the diagonalization of the Hamiltonian operator in quantum mechanics, diverges. We obtain therefore a dynamical classification of large classical or quantum systems. This is of special interest for quantum systems as, historically, quantum mechanics has been formulated following closely the patterns of classical integrable systems. The well known results of Friedrichs concerning the coupling of discrete states with a continuum are recovered. However, the role of the collision operator suggests new ways of eliminating the divergence in the unitary transformation theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.