Abstract
We study the Poincaré boundary-value problem with measurable in terms of the logarithmic capacity boundary data for semilinear Poisson equations defined either in the unit disk or in Jordan domains with quasihyperbolic boundary condition. The solvability theorems as well as their applications to some semilinear equations, modelling diffusion with absorption, plasma states and stationary burning, are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Reports of the National Academy of Sciences of Ukraine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.