Abstract

The Poincaré group is adapted as the gravitational gauge group. The equation of gravitational field in the Reimann-Cartan space-time with a Lagrangian containing linear and quadratic terms of strengths is investigated. For static and spherically symmetric field the vacuum solution in the macroscopic limit is shown to correspond to Schwar-zchild solution. Therefore this is in agreement with the experiments for general relativity. But in the microscopic limit, the field equation may predict a new type of short-range interaction.The spin 1/2 particle, Dirac particle, is taken as a probing particle. Its motion in the vacuum static and spherically symmetric gravitation field is explored. As a result, it is shown that the equation of motion of the Dirac particle only depends upon the Reimannian part of affine connection and has the same form as the corresponding equation of general relativity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.