Abstract

By means of morphological and biochemical criteria, we here provide evidence for the localization and function of premature ovarian failure, 1B (POF1B) in desmosomes. In monolayers of Caco-2 intestinal cells and in stratified HaCaT keratinocytes, endogenous POF1B colocalized with desmoplakin at desmosome plaques and in cytoplasmic particles aligned along intermediate filaments (IFs). POF1B predominantly co-fractionated with desmosomes and IF components and exhibited properties characteristic of desmosomes (i.e., detergent insolubility and calcium independence). The role of NH2 and COOH domains in the association of POF1B with desmosomes and IFs was revealed by transient expression of the truncated protein in Caco-2 cells and in cells lacking desmosomes. The function of POF1B in desmosomes was investigated in HaCaT keratinocytes stably downregulated for POF1B expression. Transmission electron microscopy analysis revealed a decrease in desmosome number and size, and desmosomes of the downregulated keratinocytes displayed weak electron-dense plaques. Desmosome alterations were associated with defects in cell adhesion, as revealed by the reduced resistance to mechanical stress in the dispase fragmentation assay. Moreover, desmosome localization of POF1B was restricted to granular layers in human healthy epidermis, whereas it largely increased in hyperproliferative human skin diseases, thus demonstrating the localization of POF1B also in desmosomes of multistratified epithelia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.