Abstract

AbstractA correction method to remove proton contamination from the electron channels of the Polar‐orbiting Operational Environmental Satellites Medium Energy Proton/Electron Detector (MEPED) is described. Proton contamination estimates are based on measurements in five of the MEPED proton spectral channels. A constrained inversion of the MEPED proton channel response function matrix is used to calculate proton differential flux spectra. In this inversion, the proton energy distribution is described by a weighted combination of exponential, power law, and Maxwellian distributions. Proton contamination in the MEPED electron spectral channels is derived by applying the electron channel proton sensitivities to the proton fluxes from the best fit proton spectra. Once the electron channel measurements are corrected for proton contamination, an inversion of the electron channel response function matrix is used to calculate electron differential flux spectra. A side benefit of the method is that it yields an estimate for the integrated electron flux in the energy range from 300 keV to 2.5 MeV with a center energy at ~800 keV. The final product is a differential spectrum of electron flux covering the energy range from about 10 keV to 2.5 MeV that is devoid of proton contamination except during large solar proton events. Comparisons of corrected MEPED differential fluxes to the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions Instrument for Detecting Particles show that MEPED fluxes are greater than what is expected from altitude‐induced particle population changes; this is attributed at least partially to measurement differences in pitch angle range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.