Abstract

The green synthesis of carbon dots (CDs) from natural sources is a challenging goal. Herein CDs are produced from Agapanthus africanus (L.) Hoffmann leaves by carbonization at 200/300 °C for 2/3h. Samples are named CZ-X-Y, where Z, X, and Y represent carbonization, temperature, and time, respectively. CZ-200-3, CZ-300-2, and CZ-300-3 CDs have average sizes of 3.7 ± 0.7, 5.3 ± 1.2, and 5.1 ± 1.6nm, respectively. Their surface, devoid of chlorophyll, contains ─OH, ─C═O, and ─C(═O)OH groups and sylvite. Isolated CZ-300-3 emits at 400nm (excited at 260nm) and exhibits an emission quantum yield (QY) value of 2 ± 1%. Embedding in the d-U(600)/d-(900) di-ureasil matrices resulted in transparent films with emission intensity maxima at 420/450nm (360nm), and QY values of 7 ± 1/16 ± 2% (400nm). The enhancement of the QY value of the bare CDs agrees withan efficient passivation provided by the hybrid host. The hydrophilic CZ-300-3 CDs also exerted a marked surface modifying role, changing the surface roughness and the wettability of the hybrid films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.