Abstract

Drought is very detrimental when it occurs during the reproductive phase of soybeans, leading to considerable yield loss due to the disproportionate allocation of photo-assimilates to competing sinks. As pod walls are known to play a crucial role in regulating carbon partitioning during seed filling under stress conditions, the present study aims to analyze the stage-specific carbon allocation pattern during potassium iodide (KI)-simulated terminal drought, and to provide an insight into the pod-wall proteome responses during drought onset. A comparative proteomics approach was adopted to visualize the differential protein expression in soybean pod-wall at stage R5 (seed initiation). Sugar status was analyzed using high-performance liquid chromatography (HPLC) and biochemical methods. Potassium iodide-simulated terminal drought during reproductive stages 4, 5 and 6 (R4, R5, and R6) caused a significant decline in starch, total carbohydrate, and reducing sugar in the leaves; however, the pod-wall and seeds showed a reduction only in the total carbohydrate content, whereas starch and reducing sugar levels remained unchanged. A pod-wall proteome at stage R5 showed immediate induction of proteins belonging to stress signaling / regulation, protein folding / stabilization, redox-homeostasis, cellular energy, and carbon utilization and down-regulation of negative regulators of drought stress and protein degradation-related proteins. A KI spray effectively simulated terminal drought stress and caused around 50% yield loss when compared to controls. Our results indicate that, at the very onset of desiccation stress, the pod wall (stage R5) activates strong protective responses to maintain the carbon allocation to the surviving seeds. © 2018 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.