Abstract

The pathogenic role of excessive vascular endothelial growth factor (VEGF)-A in diabetic nephropathy has not been defined. We sought to test whether increased podocyte VEGF-A signalling determines the severity of diabetic glomerulopathy. Podocyte-specific, doxycycline-inducible Vegf₁₆₄ (the most abundant Vegfa isoform) overexpressing adult transgenic mice were made diabetic with low doses of streptozotocin and examined 12 weeks after onset of diabetes. We studied diabetic and non-diabetic transgenic mice fed a standard or doxycycline-containing diet. VEGF-A and albuminuria were measured by ELISA, creatinine was measured by HPLC, renal morphology was examined by light and electron microscopy, and gene expression was assessed by quantitative PCR, immunoblotting and immunohistochemistry. Podocyte Vegf₁₆₄ overexpression in our mouse model of diabetes resulted in advanced diabetic glomerulopathy, characterised by Kimmelstiel-Wilson-like nodular glomerulosclerosis, microaneurysms, mesangiolysis, glomerular basement membrane thickening, podocyte effacement and massive proteinuria associated with hyperfiltration. It also led to increased VEGF receptor 2 and semaphorin3a levels, as well as nephrin and matrix metalloproteinase-2 downregulation, whereas circulating VEGF-A levels were similar to those in control diabetic mice. Collectively, these data demonstrate that increased podocyte Vegf₁₆₄ signalling dramatically worsens diabetic nephropathy in a streptozotocin-induced mouse model of diabetes, resulting in nodular glomerulosclerosis and massive proteinuria. This suggests that local rather than systemic VEGF-A levels determine the severity of diabetic nephropathy and that semaphorin3a signalling and matrix metalloproteinase-2 dysregulation are mechanistically involved in severe diabetic glomerulopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.